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Abstract

Objectives. Although antiretroviral therapy (ART) efficiently
suppresses HIV viral load, immune dysregulation and dysfunction
persist in people living with HIV (PLWH). cd T cells are functionally
impaired during untreated HIV infection, but the extent to which
they are reconstituted upon ART is currently unclear. Methods.
Utilising a cohort of ART-treated PLWH, we assessed the frequency
and phenotype, characterised in vitro functional responses and
defined the impact of immune checkpoint marker expression on
effector functions of both Vd1 and Vd2 T cells. We additionally
explore the in vitro expansion of Vd2 T cells from PLWH on ART
and the mechanisms by which such expanded cells may sense and
kill HIV-infected targets. Results. A matured NK cell-like
phenotype was observed for Vd1 T cells among 25 ART-treated
individuals (PLWH/ART) studied compared to 17 HIV-uninfected
controls, with heightened expression of 2B4, CD160, TIGIT and
Tim-3. Despite persistent phenotypic perturbations, Vd1 T cells
from PLWH/ART exhibited strong CD16-mediated activation and
degranulation, which were suppressed upon Tim-3 and TIGIT
crosslinking. Vd2 T cell degranulation responses to the
phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate
at concentrations up to 2 ng mL�1 were significantly impaired in
an immune checkpoint-independent manner among ART-treated
participants. Nonetheless, expanded Vd2 T cells from PLWH/ART
retained potent anti-HIV effector functions, with the NKG2D
receptor contributing substantially to the elimination of infected
cells. Conclusion. Our findings highlight that although significant
perturbations remain within the cd T cell compartment
throughout ART-treated HIV, both subsets retain the capacity for
robust anti-HIV effector functions.
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INTRODUCTION

For people living with HIV-1 (PLWH), antiretroviral
therapy (ART) efficiently suppresses viral replication
and improves immunodeficiency.1,2 Interruption of
treatment results in rapid viral rebound from a
reservoir of long-lived provirus-harbouring cells.3,4

The necessity for lifelong adherence to ART holds
considerable financial and health-associated
effects.5 In addition, long-term ART does not fully
restore immune function, as evidenced by
persistent elevated risk of Mycobacterium
tuberculosis reactivation,6,7 residual immune
activation, exhaustion and dysfunction.8–12

One well-described impact of acute HIV-1 (HIV
herein) infection is the substantial alteration of the
composition and phenotype of unconventional
T cells, including cd T cells. cd T cells exhibit
MHC-independent reactivity to non-peptide
antigens, and in humans are classified into two major
subsets by Vd-chain usage. While the Vd1 subset is
more frequent at mucosal sites,13,14 the Vd2 subset
makes up to 90% of the total cd T cell population
within peripheral blood of healthy adults.15 The most
prominent effect of untreated HIV infection on cd
T cells is the inversion of typical Vd1:Vd2 T cell ratios,
attributed to the depletion of the Vc9Vd2 subset and
the concurrent expansion of Vd1 T cells16–19

potentially driven by human cytomegalovirus
(HCMV) infection.20–23 Throughout untreated HIV
infection, Vd2 T cells exhibit substantially diminished
capacity for proliferation, cytokine secretion,
cytolysis and expression of cytotoxic mediators.24–31

Although ART may partially re-establish normal Vd1:
Vd2 ratios, cd T cells remain highly activated, and
there are conflicting reports of the extent to which
cd T cell function is restored.25,26,30,32–39

One potential mediator of cd T cell dysfunction is
the expression of immune checkpoint molecules
(ICMs). During chronic viral infections, persistent
antigen exposure drives ICM expression on
lymphocytes, including PD-1, TIGIT, Tim-3, CD160
and 2B4. While expression of these markers can
reflect a state of immune exhaustion, the
functional impact of ICM expression can vary across
cellular subsets. Engagement of CD160 on NK cells
induces potent effector functions, even in the
context of HIV infection,40–43 while there are
contradictory reports of the inhibitory or activating
nature of signalling through Tim-3 and TIGIT.44–53

Currently, the impact of ICM expression on cd
T cells remains poorly defined, both at steady-state
and in the context of HIV infection.54,55

In addition to CD8+ T cells and NK cells, cd T cells
are intriguing candidates for targeting HIV-infected
cells in HIV cure strategies. While both cd T cell
subsets play an important role in sensing HIV-infected
cells,56–58 the Vd2 T cell subset is a particularly
interesting immunotherapeutic tool and may
contribute to elimination of reactivated HIV-infected
cells upon latency reversal.57,59 The magnitude of
and relative ease by which Vd2 T cells can be
expanded in vitro or in vivo through application of
aminobisphosphonates makes this subset suitable for
clinical applications, and human trials involving both
allogeneic and autologous Vd2 T cell-based
immunotherapies targeting various cancer types have
revealed acceptable safety profiles.60–63 The Vd1 T cell
subset also holds potential for HIV immunotherapies,
with expansion protocols for Delta One T (DOT) cells
providing opportunities for clinical manipulation.64

Vd1 T cells are capable of antibody-dependent
cellular cytotoxicity (ADCC) upon FccRIII (CD16)
ligation,65–67 suggesting Vd1 T cells could facilitate
antibody-mediated killing of HIV-infected cells upon
infusion of broadly neutralising antibodies (BnAbs).68

Furthermore, cytotoxic natural killer receptors (NKRs)
such as NKG2C are also elevated on Vd1 T cells within
HIV infection and may contribute substantially to
target cell recognition.69

Strategies involving cd T cell-mediated elimination
of HIV-infected cells must first address gaps in
knowledge including mechanisms of infected cell
recognition and the impact of ICMs on cytotoxicity
pre- and post-expansion. Therefore, we assessed
frequency and phenotype of Vd1 and Vd2 T cells in
the context of chronic ART-suppressed HIV infection,
characterised the functional capacity and defined
the impact of ICM expression on effector functions
of both subsets. We additionally explore the in vitro
expansion of Vd2 T cells from PLWH on ART and the
mechanisms by which such expanded cells may sense
and kill HIV-infected targets. Findings here not only
elucidate the impact of chronic infection and ART
treatment on cd T cell subsets but also aid in a path
towards cd T cell-based immunotherapies within
chronic viral infections such as HIV.

RESULTS

Vd1 T cells are enriched for ICMs and
markers of NK cell function in
ART-suppressed PLWH

To assess the extent to which suppressive ART
reconstitutes both the frequency and phenotype of
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cd T cells, we analysed circulating Vd1 and Vd2 T cells
among a cohort of 25 PLWH on ART and 17 age-
matched uninfected (UI) controls (Supplementary
table 1, Supplementary figure 1a, b). The subset of
PLWH/ART donors used for phenotyping had been
receiving ART treatment for a median 51 months,
were virally suppressed (< 100 copies mL�1), with
CD4+ T cell counts above 250 lL�1. Despite
reconstitution of CD4 T cells, PLWH exhibited
persistent expansion of Vd1 T cells (median 0.6% UI;
2.3% ART, P = 0.003) and concurrent depletion of
Vd2 T cells (median 1.3% UI; 0.5% ART, P = 0.006)
relative to UI controls (Figure 1a and b). Consistent
with previous reports,17,35,55,70 we observed an
inversion of the peripheral blood Vd2:Vd1 T cell
ratio in PLWH/ART (median 2.35 UI; 0.22 ART,
P < 0.0001) (Figure 1b).

To determine whether perturbations of Vd1
T cells were associated with elevated expression of
ICMs, we assessed expression of 2B4, CD160, PD-1,
Tim-3 and TIGIT. We observed significantly
elevated expression of 2B4 (median 79.1% UI;
97.5% ART), CD160 (median 36.2% UI; 65.5%
ART), Tim-3 (median 9.6% UI; 35.2% ART) and
TIGIT (median 41.5% UI; 51.3% ART) in PLWH/ART
compared to the age-matched UI controls
(Figure 1c and d, P < 0.05 for all). Conversely,
PD-1 expression was significantly reduced in
PLWH/ART (median 45.5% UI; median 25.1% ART,
P = 0.033) (Figure 1c).

Vd1 T cells of PLWH on ART also displayed
increased expression of several NK-cell receptors
involved in activation and effector function, such as
CD94 (median 5.1% UI; 16.2% ART, P = 0.010), CD16
(median 13.5% UI; 44.1% ART, P < 0.0001) and
NKG2C (median 6.5% UI; 15.2% ART, P = ns/0.054)
(Figure 1e and f). Chronic viral infection has been
reported to drive the appearance of highly
differentiated CD16+ CD27dim/� Vd1 T cells, which,
similar to NK cells, can co-express NKG2C and
CD57.65,71 We similarly observed significantly
elevated frequencies of CD16+ NKG2C+ (median
2.2% UI; 4.9% ART) and highly differentiated CD16+

NKG2C+ CD57+ (median 0.8% UI; 3.5% ART) Vd1
T cells in the ART group in comparison to healthy
controls (Figure 1g). Notably, Tim-3 expression was
highly enriched among CD16+ Vd1 T cells (median
60.8%, 3.75-fold increase over CD16�), with further
enrichment among CD16+ NKG2C+ CD57+ subsets
(median 64.7%, 3.99-fold increase from CD16�)
(Figure 1h and i). These data suggest that, in a
manner analogous to NK cells,50,53,72 Tim-3
expression may be associated with the maturation

and differentiation of cytotoxic Vd1 T cells in
ART-treated PLWH.

Vd1 T cells exhibit an NK cell-like functional
program during ART-treated HIV

Having observed persistent phenotypic changes
and the presence of differentiated NK-like subsets
of Vd1 T cells in the ART cohort, we next asked
whether these were associated with impaired
functional responses. To do so, CD3 or CD16 were
crosslinked to the murine FccR expressing P815 cell
line using monoclonal antibodies on a subset of 12
donors from the PLWH/ART cohort. We measured
expression of CD69 and CD107a on CD27dim/� Vd1
T cells (excluding the CD27hi na€ıve-like subset)
(Figure 2a–d, Supplementary figure 2a, b),
confirming that both CD3 and CD16 crosslinking
were sufficient to trigger both activation and
degranulation relative to an isotype control.

Given the elevated expression of 2B4, CD160,
Tim-3, TIGIT, NKG2C on Vd1 T cells within the ART
group, we assessed whether receptor ligation
could mediate inhibitory or activating signals in
the context of CD16-mediated activation.
CD16-mediated activation and degranulation were
significantly inhibited upon additional crosslinking
of Tim-3 (median 1.05-fold decrease CD69, P = 0.034;
1.57-fold decrease CD107a, P = 0.006) and TIGIT
(median 1.37-fold decrease CD69, P = 0.001;
3.60-fold decrease CD107a, P = 0.004) (Figure 2e–g).
In contrast, degranulation (but not activation) could
be marginally enhanced upon CD16-crosslinking
with either 2B4 or NKG2C (Figure 2h and i),
while CD160 or PD-1 crosslinking had no impact
(Figure 2j, Supplementary figure 3a, b). CD3-mediated
functions followed a similar trend, with activation
and degranulation inhibited by Tim-3 and TIGIT
(Supplementary figure 3c–l). Overall, Vd1 T cells
from PLWH/ART were functionally competent,
could mediate CD16-dependent degranulation and
could be negatively regulated through ligation of
Tim-3 and TIGIT.

Perturbations in Vd2 T cell memory states
are partially reconstituted in ART-
suppressed PLWH

We next characterised the phenotype and
function of Vd2 T cells within ART-treated PLWH
(Supplementary figure 1a, c). Interestingly, we
observed that Tim-3 (median 2.5% UI; 13.5% ART)
was the only ICM differentially expressed on Vd2
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Figure 1. Vd1 T cell phenotypes during chronic ART-treated HIV. (a) Representative staining and quantification of Vd1+ and Vd2+ frequencies

and (b) ratios within total T cells in PLWH/ART and UI. (c) Quantification of 2B4, CD160, PD-1, Tim-3 and TIGIT expression and (d) representative

staining of CD160, Tim-3 and TIGIT on Vd1+ T cells in UI and PLWH/ART. (e) Quantification of CD56, CD94, CD16, NKG2C and CD57 expression

and (f) representative staining of CD16 and NKG2C on Vd1+ T cells in UI and PLWH/ART. (g) %CD16+ NKG2C+ and %CD16+ NKG2C+ CD57+

Vd1+ T cells from UI and PLWH/ART. (h) Representative plot depicting co-expression of CD16 and Tim-3 on Vd1+ T cells in PLWH/ART. (i) Tim-3

expression on Vd1+ T cells by maturation status in PLWH/ART. Data represents median with IQR. Each datapoint represents results from an

individual donor (UI n = 17, ART n = 26, except (i), where n = 16 for CD16+ NKG2C+ and CD16+ NKG2C+ CD57+). Statistics were assessed by

Mann–Whitney U-tests, except for (i), where statistics were assessed by Wilcoxon matched-pair signed rank test. *P < 0.05; **P < 0.01;

***P < 0.001; ****P < 0.0001. ART, antiretroviral therapy; PLWH, people living with HIV; UI, uninfected individuals.
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T cells among PLWH/ART in comparison to
uninfected controls (Figure 3a and b). Contrastingly,
we found Vd2 T cells from both UI and PLWH/ART
groups expressed similarly high levels of 2B4, CD160

and PD-1, with a substantial degree of variability
between donors within the two cohorts (Figure 3a),
while TIGIT expression was generally minimal across
both groups. The impact of chronic infection on the

Figure 2. Vd1 T cell effector functions during chronic ART-treated HIV. Representative staining and quantification of (a, b) CD69 and

(c, d) CD107a expression on CD27dim/� Vd1+ T cells within PBMC of PLWH/ART upon isotype, CD3 or CD16 crosslinking with P815 cells.

(e) Representative staining and (f) quantification of CD107a and CD69 expression on CD27dim/� Vd1+ T cells within PBMC of PLWH/ART upon

P815 cell crosslinking with CD16 plus either an isotype control or TIGIT. Frequency of CD69 and CD107a expression on CD27dim/� Vd1+ T cells

within PBMC of PLWH/ART upon concurrent crosslinking of P815 cells with CD16 plus either (g) Tim-3, (h) 2B4, (i) NKG2C or (j) CD160. Values

for (f–j) are background subtracted using an isotype only control condition. Each datapoint represents results from an individual donor (n = 12).

Statistics were assessed by the Wilcoxon matched-pairs signed rank test. *P < 0.05; **P < 0.01; ***P < 0.001. ART, antiretroviral therapy; PLWH,

people living with HIV.
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differentiation state of Vd2 T cells was also
apparent, with those from the ART group more
frequently taking on a T central memory (TCM)-like
CD27+ CD45RA� phenotype (median 51.5% UI;
68.9% ART), and less frequently exhibiting a T na€ıve
(Tn)-like CD27+ CD45RA+ phenotype (median 22.4%
UI; 13.3% ART) (Figure 3c and d). Given the
significantly elevated expression of Tim-3 among
the ART cohort, we assessed its expression across
memory subsets. Tim-3 expression was elevated on
Tn (median 3.4 UI; 10.6% ART, P = 0.003), TCM
(median 1.1% UI; 6.9% ART, P < 0.0001) and
TEM-like (median 2.9% UI; 16.9% ART, P = ns/0.055)
Vd2 T cell subsets in PLWH/ART compared to
uninfected controls, with the most pronounced
expression on TEMRA-like CD27�CD45RA+ cells
(median 7.3% UI; 42.3% ART, P = 0.002) (Figure 3e).

Vd2 T cells from ART-treated PLWH exhibit
impaired sensitivity to low-dose HMB-PP
stimulation

To investigate whether the residual Vd2 population
was functionally competent in the PLWH/ART

group, we stimulated PBMC from a subset of
eight PLWH/ART patients with the potent bacterial
phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl
pyrophosphate (HMB-PP) and compared responses
with age-matched healthy controls (Supplementary
figure 4a–c). Activation (CD69) and degranulation
(CD107a) were measured after 5 h of in vitro
stimulation and varied substantially across
individuals (Figure 4a–c). Nonetheless, Vd2 T cell
responses among the ART cohort were negligible
at the lowest HMB-PP dose tested (0.02 ng mL�1),
with only three out of the eight individuals
exhibiting responses above background (Figure 4b
and c). This stands in contrast to the healthy control
donors, where 100% of participants exhibited
responses. Furthermore, degranulation of Vd2
T cells was significantly reduced in the ART cohort
at HMB-PP concentrations up to 2 ng mL�1

(median 23.8% UI vs. 7.1% ART, P = 0.021;
Figure 4b), with incomplete restoration even at
20 ng mL�1 (median 24.8% UI; 9.7% ART,
P = ns/0.105; Figure 4b). Interestingly, Vd2 T cells
from PLWH/ART were not fully refractory to
activation, as HMB-PP-induced CD69 expression

Figure 3. Impact of chronic ART-treated HIV infection on Vd2 T cell phenotypes. (a) Quantification and (b) representative staining of 2B4,

CD160, PD-1, Tim-3 and TIGIT on Vd2+ T cells in UI and PLWH/ART. (c) Quantification and (d) representative staining of Tn (CD27+ CD45RA+),

TCM (CD27+ CD45RA�), TEM (CD27� CD45RA�) and TEMRA (CD27� CD45RA+) on Vd2+ T cells in UI and PLWH/ART. (e) Tim-3 expression

on Tn, TCM, TEM and TEMRA Vd2+ T cell subsets. Data represents median with IQR. Each datapoint represents results from an individual donor

((a, c) UI n = 17, ART n = 27, (e) n = 6–27, depending on cell number). Statistics were assessed by Mann–Whitney U-tests. *P < 0.05;

**P < 0.01; ***P < 0.001; ****P < 0.0001. ART, antiretroviral therapy; PLWH, people living with HIV; UI, uninfected individuals.
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was more comparable between groups (Figure 4c),
although there was a trend towards lower
activation for the PLWH/ART group.

As 2B4, CD160, PD-1 and Tim-3 were all expressed
on Vd2 T cells within the cohort of PLWH on ART,
we assessed whether inhibitory signalling through
these receptors could be contributing to impaired
HMB-PP responsiveness. HMB-PP-mediated Vd2

responsiveness was not impacted by blocking with
monoclonal antibodies against any of the ICMs,
with no significant changes in expression of either
CD69 or CD107a (Figure 4d–g). Therefore, we
conclude that it is unlikely that the impaired
responsiveness to HMB-PP ex vivo observed in
PLWH/ART is because of differential expression of
ICMs between these cohorts.

Figure 4. HMB-PP induced activation of Vd2 T cells within ART-treated PLWH. (a) Representative staining of CD107a and CD69 expression on

Vd2+Vc9+ T cells within PBMC of PLWH/ART or UI donors either unstimulated or upon stimulation with 2 ng mL�1 HMB-PP. Quantification of

(b) CD107a+ and (c) CD69+ expressing Vd2+Vc9+ T cells after in vitro stimulation of whole PBMC from PLWH/ART or UI with 0.02 ng mL�1,

0.2 ng mL�1, 2 ng mL�1 or 20 ng mL�1 HMB-PP. Data represents median with IQR. Each datapoint represents results from an individual donor

(n = 8 UI, n = 8 ART). Statistics were assessed Mann–Whitney U-tests. *P < 0.05. The impact of blocking (d) 2B4, (e) PD-1, (f) CD160 or

(g) Tim-3 on %CD107a+ and %CD69+ Vd2+ T cells within PBMC of PLWH/ART upon 0.2 ng mL�1 HMB-PP stimulation. Each datapoint

represents results from an individual donor (n = 11). Statistics were assessed by the Wilcoxon matched-pairs signed rank test. ART, antiretroviral

therapy; HMB-PP, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate; PLWH, people living with HIV; UI, uninfected individuals.
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Vd2 T cells from ART-treated PLWH exhibit a
reduced capacity for in vitro expansion

In vitro or in vivo-expanded Vd2 T cells are a
potential immunotherapeutic tool for the
treatment of a number of infectious diseases.
In line with this, we assessed whether
ART-suppressed chronic HIV infection impacts the
expansion potential of Vd2 T cells, and whether
such expanded cells were capable of targeting
HIV-infected cells. PBMC from a subset of 16
PLWH/ART were treated with zoledronate plus
IL-2 to induce in vitro expansion of Vd2 T cells.

The cellular composition of cultures was assessed
by flow cytometry on day 10 or 11
(Supplementary figure 5a). Vd2 expansion was
poor in nine out of the 16 PLWH/ART, where Vd2
T cells composed < 60% of the resultant culture
(Figure 5a). In contrast, expansion from healthy
donors which resulted in cultures with median
frequencies of about 80–92.1% Vd2+ CD3+

(Supplementary figure 5b).73 Contaminating cells
in expansions from PLWH/ART were largely ab
T cells (median 18.2%) and CD3� CD56+ NK cells
(median 10.6%) (Figure 5b). The best correlate of
Vd2 expansion for PLWH/ART donors was the

Figure 5. Phenotype of expanded Vd2 T cells from PLWH on ART. (a, b) Frequency of Vd2+ CD3+, Vd1+ CD3+, ab TCR+ CD3+, CD56+ CD3� (NK

cells) or undefined cells as a proportion of total live lymphocytes within cultures from PLWH/ART after 10/11 days of zoledronate and

IL-2-mediated in vitro expansion. (c) Correlation between %Vd2+ T cells pre-expansion and %Vd2+ T cells on day 10/11 of in vitro expansion.

Expression of (d) Tim-3, (e) CD160, (f) PD-1 and (g) TIGIT on Vd2+ T cells from PLWH/ART pre-expansion (day 0) or after 14 days of in vitro

expansion. (h) Quantification and (i) representative staining of NKG2D expression on Vd2+ T cells from PLWH/ART pre-expansion (day 0) or after

14 days of in vitro expansion. Data represents median with IQR. Each datapoint represents results from an individual donor ((a–c) n = 16, (d–h)

n = 10). Statistics were assessed by the Wilcoxon matched-pairs signed rank test. Correlations were calculated with Spearman’s r with two-tailed

post-tests. *P < 0.05; **P < 0.01. ART, antiretroviral therapy; PLWH, people living with HIV.
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baseline frequency of Vd2 T cells in PBMC
(Spearman’s r 0.52; P = 0.05) (Figure 5c), rather
than any markers of Vd2 T cell differentiation
(Supplementary figure 5c, d). We next assessed
the modulation of ICM expression during in vitro
expansion (Supplementary figure 6a, b). Expanded
Vd2 T cells exhibited near-universal up-regulation
of Tim-3 (median 0.8% day 0; 97.4% day 14)
coupled with near-total loss of CD160 (median
29.6% day 0; 0.3% day 14) (Supplementary
figure 6b, Figure 5d and e). Neither PD-1 nor
TIGIT expression were significantly modulated
during expansion (Figure 5f and g). Finally, we
assessed expression of NKG2D, a surface receptor
known to contribute substantially to Vd2 T cell-
mediated cytotoxicity, which may be involved in
the recognition of HIV-infected cells. The
frequency of NKG2D+ Vd2 T cells was significantly
increased after in vitro expansion (median 73.7%
day 0; 97.7% day 14, P = 0.010) (Figure 5h and i).

Expanded Vd2 T cells from ART-treated
PLWH maintain efficient anti-HIV effector
functions

To assess whether expanded Vd2 T cells maintain
anti-HIV effector functions in ART-suppressed
chronic HIV infection, we performed infected cell
elimination (ICE) assays against the 8E5/LAV cell
line, a CEM-derived cell line that contains a single
copy of the HIV provirus.74,75 Importantly, cultures
of 8E5 cells contain a mix of provirus transcribing
cells and cells that have lost the ability to produce
viral antigens. Detection of the p24 antigen via
flow cytometry allows identification of HIV
transcribing cells in such mixed cultures.76 Lysis of
p24+ (HIV antigen expressing) or p24� (non-antigen
expressing) 8E5 cells was measured after a 4-h
co-incubation with expanded Vd2 T cells at effector
to target (E:T) cell ratios of 5:1. 2:1, 1:1, 1:2, 1:5 and
1:10 (Supplementary figure 7a). Expanded Vd2
T cell cultures from PLWH/ART containing less than
70% Vd2 T cells were depleted of contaminating ab
and/or Vd1 T cells prior to use in ICE assays
(Supplementary figure 7b).

Despite the persistent defects in ex vivo
responsiveness to HMB-PP, Vd2 T cells from the ART
group efficiently eliminated HIV-infected cells
(Figure 6a). At the highest E:T ratio tested (5:1),
expanded Vd2 T cells from uninfected donors
demonstrated considerable cytotoxicity against
infected (p24+) cells (median 80.6%; Figure 6b). Vd2
T cells expanded from PLWH/ART also displayed

substantial elimination of p24+ 8E5 cells (median
94.4%; Figure 6a). Impressively, Vd2 T cells
expanded from PLWH/ART were still able
to efficiently kill infected cells at the 1:10 E:T ratio
(median 16.0%). Furthermore, p24+ cells were
preferentially killed, with a lower level of
cytotoxicity against the p24� 8E5 cells, and minimal
killing of the uninfected parental like CEM.NKR
CCR5 cell line (Supplementary figure 7c). These data
indicate HIV infection of this cell line is likely
contributing to recognition by Vd2 T cells, which is
further elevated upon transcription of viral
antigens.

To determine the mechanism of infected cell
elimination, we first examined expression of
ligands for the key Vd2 T cell cytotoxic surface
receptors DNAM-1, 2B4 and NKG2D on 8E5 target
cells using Fc-chimera proteins (Supplementary
figure 8a). As the ligands for 2B4 and NKG2D, but
not DNAM-1, were expressed to high degrees on
target cells (Supplementary figure 8b–d), we next
blocked 2B4 or NKG2D within the infected cell
elimination assay at E:T ratios of 1:1. Here, we
observed that blocking NKG2D significantly
diminished the targeting of both p24+ (median
24.79% decrease UI, median 58.36% decrease
ART) and p24� (median 15.94% decrease UI,
median 46.35% decrease ART) cells by expanded
Vd2 T cells when compared to an isotype control
(Figure 6c and d), suggesting the NKG2D surface
receptor contributes substantially to recognition
of HIV-infected cells by expanded Vd2 T cells.

DISCUSSION

Although ART efficiently suppresses viral replication
and reconstitutes CD4 T cell counts, ongoing
inflammation and incomplete restoration of
immune function results in persistently elevated risk
of co-morbidities and co-infections such as TB.77,78

The extent to which perturbations within the cd
T cell compartment are restored following ART is
understudied, despite the potential importance of
cd T cells as an immunotherapy tool. Here, we report
persistence of highly differentiated Vd1 T cells
despite ART-mediated viral suppression, with
elevated expression of ICMs such as Tim-3 and TIGIT
that were found to suppress effector functions. Vd2
T cell reactivity to phosphoantigen stimulation
remained diminished within ART-treated
individuals; however, no link between ICM
expression and reduced responsiveness could be
identified. Despite residual perturbations in
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phenotypes, both Vd1 and Vd2 T cell subsets from
PLWH on ART exhibited a strong capacity for anti-
HIV effector functions, highlighting their potential
for use within future immunotherapies or HIV
curative strategies.

During untreated HIV infection, viral replication in
the gut-associated lymphoid tissue (GALT) damages
the mucosal epithelia, allowing translocation of
microbial products into the circulation and driving
systemic immune activation.79–81 Previous studies
have suggested that microbial translocation is
involved in Vd1 T cell expansion, activation,
proinflammatory cytokine production31,82–85 and
terminal differentiation.25,82,85–87 Notably, Fausther-
Bovendo et al. (2008) reported a loss of NKG2A and
acquisition of NKG2C expression on Vd1 T cells from
untreated PLWH, finding NKG2C to contribute
substantially to Vd1-mediated elimination of
HIV-infected CD4+ T cells.69 Similar observations have
been reported in elite controller (EC) cohorts,82,85

where PLWH maintain low or undetectable plasma
viraemia but experience persistent viral replication

in, and damage to, the GALT.88 Our data highlight
that, similar to both untreated HIV infection and EC
cohorts, PLWH on ART exhibit the persistence of
highly differentiated, TEMRA-like Vd1 T cells, and
demonstrate that the phenotype of these highly
differentiated Vd1 T cells mirrors that of matured
CD16+ NKG2C+ and CD16+ NKG2C+ CD57+ NK cell
subsets. Similar populations of expanded, cytotoxic
Vd1 T cell subsets with elevated expression of CD16,
CD57 and NKG2C have been described in HCMV
infection,20–23 which is highly prevalent among
PLWH (90–100% seropositivity).89,90 We therefore
speculate that the Vd1 expansion and differentiation
observed during ART is likely to be driven by a
combination of HCMV, microbial translocation and
inflammatory signals, all of which persist despite
effective viral suppression.79,80,91

Vd1 T cells nonetheless appear to remain highly
functional during ART, as demonstrated by the
robust CD3- and CD16-driven activation and
degranulation observed in our assays, which is
consistent with other reports describing the

Figure 6. Elimination of HIV-infected cells by expanded Vd2 T cells from PLWH on ART or UI. Elimination of p24+ (purple) or p24� (green) 8E5

cells by expanded Vd2 T cells. Cytotoxic capacity of Vd2 T cells expanded from (a) PLWH/ART and (b) UI at E:T ratios of 5:1, 2:1, 1:1, 1:2, 1:5 or

1:10. Impact of blocking antibodies against an isotype control, NKG2D or 2B4 at an E:T ratio of 1:1 with Vd2 T cells expanded from (c) PLWH/ART

and (d) UI. Each datapoint represents results from an individual donor (n = 9). Statistics were assessed by the Wilcoxon matched-pairs signed rank

test. *P < 0.05; **P < 0.01. ART, antiretroviral therapy; E:T, effector:target; PLWH, people living with HIV; UI, uninfected individuals.
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cytotoxic capacity of Vd1 T cells from both treated
and untreated HIV infection.69,92 Data regarding
ICM expression and function on cd T cells is sparse
and often conflicting; increased expression of PD-1
on Vd1 and Vd2 T cells has been observed in
ART-treated HIV infection,55 while others report
elevated expression of Tim-3, TIGIT and CD160.54

Here, we find that 2B4, CD160, Tim-3 and TIGIT
were expressed by a higher proportion of Vd1
T cells in PLWH/ART compared to uninfected
controls. In contrast to a previous study,55 we
observed lower PD-1 expression on Vd1 T cells in
PLWH/ART compared to age-matched uninfected
controls. These discrepant results may reflect
baseline immunological differences in Vd1 T cells or
PD-1 expression between the populations studied.
Tim-3 and TIGIT were found to suppress
CD16-driven effector functions, indicating a
potential inhibitory role for these receptors on Vd1
T cells. Conversely, we found no evidence of
inhibition of CD16-mediated activation or
degranulation by PD-1 or CD160. These data,
together with the heightened proportions of Vd1
T cells within both acute and ART-treated HIV
infection, highlight the potential for the
engagement of this subset alongside cocktails of
broadly neutralising antibodies (BnAbs) to
facilitate ADCC of reactivated HIV-infected cells.68

Additionally, our data suggest that blockade of
Tim-3 or TIGIT, or co-stimulation through NKRs
such as NKG2C or 2B4, could enhance CD16-
mediated effector functions. Further investigations
to characterise the potential of Vd1 T cell-mediated
ADCC of HIV-infected cells, and the utilisation of
DOT cells in this context could aid in the search for
a functional cure for HIV upon latency reversal.

In contrast to Vd1 T cells, Vd2 T cell cytokine
secretion, phosphoantigen reactivity and cytotoxic
capacity are considerably impaired in untreated
HIV infection.17,24–26,28–31 In parallel, increased
proportions of terminally differentiated TEMRA-like
Vd2 T cells have been commonly observed within
untreated HIV infection.17,25,35 Several previous
studies have assessed memory subset distribution
within ART-treated individuals but report
contrasting results regarding the impact of
infection on proportions of na€ıve, central memory
or TEMRA populations.17,35,38,55 In the present
study, we found elevated proportions of TCM-like
and a decreased frequency of na€ıve-like Vd2 T cells
in PLWH/ART compared to age-matched uninfected
individuals, while frequencies of TEMRA-like and
TEM-like Vd2 T cells were similar between groups.

Overall, most evidence suggests that ART treatment
may reconstitute proportions of TEMRA-like Vd2
T cells; however, perturbations evidently persist
within other memory subsets, with a high degree of
variation seen between study cohorts, perhaps
caused by geographical location, ART regimes or
differences in cohort demographics.

Our observation that Vd2 T cells from PLWH on
ART remained largely unresponsive to
phosphoantigen stimulation compared to age-
matched controls is similar to earlier reports of
continual activation and diminished functionality of
Vd2 T cells despite viral suppression.25,30,37–39,55

Blocking ICMs failed to restore sensitivity to low-
dose HMB-PP stimulation, and together with our
observation that Vd2 T cells in the PLWH/ART cohort
did not express elevated levels of most ICMs, we
conclude that these markers are unlikely to play a
significant role in Vd2 T cell functions in this context.
Of note, Tim-3 expression was found to be
significantly heightened on Vd2 T cells within
PLWH/ART across all memory states and was
additionally upregulated upon in vitro expansion.
As we were unable to find evidence that Tim-3
suppressed HMB-PP-mediated activation, the role of
this marker on Vd2 T cells remains unclear and
should be investigated within future studies.
Alternatively, compromised phosphoantigen
signalling to Vd2 T cells from HIV-infected APCs may
contribute to this functional impairment.93,94 As Vd2
T cell phosphoantigen responsiveness is mediated
through BTN3A1 and BTN2A1,95,96 future studies
should investigate the impact of acute, chronic and
ART-treated HIV infection on the expression of and
signalling through these molecules.

Although it was possible to expand Vd2 T cells in
vitro from some donors within the PLWH/ART
cohort, expansion was not as reliable or efficient as
from uninfected donors. Vd2 T cell frequencies ex
vivo correlated with the success of expansion. This
finding could be particularly relevant in the context
of therapeutic manipulation of Vd2 T cells in cohorts
of ART-treated PLWH. Identification of individuals
with efficient Vd2 T cell expansion capacity will
inform choices regarding the use of autologous
versus allogeneic immunotherapeutic approaches.
Despite the high degree of variability in HMB-PP
and/or zoledronate + IL-2 responsiveness,
successfully expanded Vd2 T cell cultures from
PLWH/ART were capable of remarkably potent
effector functions against an HIV-infected cell
line, with preferential killing of infected cells
expressing HIV antigens. Furthermore, we identify
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NKG2D-mediated recognition as a key pathway for
elimination of HIV-infected cells. HIV infection of
primary CD4+ T cells is known to drive upregulation
of the UL16-binding proteins-1 to -3, which are key
ligands for NKG2D.97 Here, we detected high
frequencies of NKG2D expressing Vd2 T cells from
PLWH/ART, which was further increased upon in
vitro expansion. We conclude that although Vd2
T cell TCR/phosphoantigen signalling pathways
appear to be compromised in the context of
HIV/ART, NKG2D-mediated recognition and
activation is not functionally impaired, allowing for
efficient elimination of infected cells.

In summary, we explored functional perturbations
of cd T cell subsets in PLWH undergoing suppressive
ART. We identify that the Vd1 T cell subset remains
highly differentiated throughout treatment, taking
on an NK cell-like phenotype with increased
expression of Tim-3 and TIGIT that were found to
slightly inhibit effector functions upon crosslinking.
Perturbations in Vd2 T cell memory phenotypes
were partially restored upon effective viral
suppression, though phosphoantigen sensitivity was
still significantly impaired. Despite persistent
phenotypical alterations in ART-treated individuals,
both cd T cell subsets maintained robust anti-HIV
effector functions, illuminating a pathway towards
the inclusion of cd T cell-based approaches within
HIV immunotherapies.

METHODS

Sample collection and isolation of PBMC
from whole blood

Whole blood was collected from a total of 52 people living
with HIV undergoing suppressive antiretroviral therapy
(PLWH/ART) recruited through the Melbourne Sexual
Health Centre between 2012 and 2023. A total of 29
uninfected controls (UI) were recruited at the University of
Melbourne. PBMC were isolated from whole blood using
Ficoll-Paque gradient density centrifugation (Cytiva,
Cambridge, USA) and either used immediately or
cryopreserved in freeze solution (90% fetal calf serum (FCS))
(Sigma-Aldrich, St. Louis, USA) and 10% dimethyl sulfoxide
(DMSO) (Sigma-Aldrich) for future use.

Ex vivo phenotypical analysis

Cryopreserved PBMC were thawed in RPMI 1640 medium
(Gibco, Waltham, USA) supplemented with 10% FCS and
penicillin/streptomycin/l-glutamate (Gibco) (RF10), briefly
washed in PBS then stained with:

UV viability dye (ThermoFisher, Scoresby, Australia), Aqua
viability dye (ThermoFisher), Vd1 FITC (TS8.2; ThermoFisher),

Vd2 BV786 (B6; BD Biosciences, San Jose, USA), Vd2 PE (B6;
Biolegend, San Deigo, USA), CD19 BB700 (SJ25C1; BD
Biosciences), CD56 BUV737 (NCAM16.2; BD Biosciences), CD3
BV510 (SK7; Biolegend), CD3 BUV805 (SK7; BD Biosciences),
CD160 Alexa Fluor-647 (BY55; BD Biosciences), PD-1 BV421
(EH12.2H7; Biolegend), Tim-3 PE-TR (7D3; BD Biosciences),
Tim-3 BUV737 (7D3; BD Biosciences), TIGIT APC Fire 750
(A15153G; Biolegend), 2B4 APC Cy7 (C1.7; Biolegend), 2B4
PE-Dazzle (C1.7; Biolegend), CD16 BV650 (3G8; BD
Biosciences), NKG2C PE (134 591; R&D Systems, Minneapolis,
USA), CD57 BV510 (QA17A04; Biolegend), CD57 PacBlue
(HCD57; Biolegend), CD94 APC (HP-3D9; BD Biosciences),
CD94 BUV395 (HP-3D9; BD Biosciences), CD45RA FITC
(HI100; Biolegend), CD45RA PerCpCy5.5 (HI100; Biolegend),
CD27 BV510 (M-T271; Biolegend), CD27 BV786 (L128; BD
Biosciences), CD27 BUV737 (L128; BD Biosciences), CD26 FITC
(BA5b; Biolegend) and NKG2D BV650 (1D11; BD Biosciences).

After surface staining, cells were washed and
resuspended in PBS containing 2% FCS before acquisition
on a BD LSR Fortessa using BD FACS Diva. For each memory
subset, donors with less than 100 events were excluded
from analysis.

ICM crosslinking of Vd1 T cells

Fresh PBMC isolated from PLWH/ART were rested overnight
in RF10 at 37°C 5% CO2. The next day, 0.5 9 106 PBMC were
added to a 96-well round bottom plate at a 1:1 ratio with
murine P815 cells (ATCC, Manassas, USA) and stimulated
with 40 ng mL�1 of monoclonal antibodies against either
CD3 (OKT3; Biolegend), CD16 (3G8; Biolegend) or an isotype
control (MOPC-21; Biolegend). 5 lg mL�1 of monoclonal
antibodies against either CD160 (BY55; Biolegend), 2B4
(C1.7; Biolegend), Tim-3 (F38-2E2; Biolegend), TIGIT
(MBSA43; eBioscience, San Diego, USA), PD-1 (EH12.2H7;
Biolegend), NKG2C (134522; R&D Systems) or an isotype
control (MOPC-21; Biolegend) were then added to CD3 or
CD16 stimulated conditions. CD107a APCH7 (H4A3; BD
Biosciences) was added to each well, and the plate was
briefly centrifuged before incubation at 37°C with 5% CO2

for 5 h. After incubation, wells were washed, and cells
stained with UV viability dye (ThermoFisher) then a cocktail
containing Vd1 FITC (TS8.2; Invitrogen, Carlsbad, USA), CD3
BV510 (SK7; Biolegend), CD27 BV650 (0323; Biolegend),
CD69 PE Dazzle (FN50; Biolegend) and CD56 BUV737
(NCAM16.2; BD Biosciences). After staining, cells were
washed and resuspended in PBS containing 2% FCS before
acquisition on a BD LSR Fortessa using BD FACS Diva.

HMB-PP induced activation of Vd2 T cells

Cryopreserved PBMC were thawed in RF10, then rested
overnight at 37°C 5% CO2. The next day, 1.0 9 106 PBMC
were added to a 96-well round bottom plate. For ICM
blocking experiments, 4 lg mL�1 of blocking antibodies
against 2B4 (eBioPP35; eBioscience), PD-1 (EH12.2H7;
Biolegend), CD160 (688327; Biolegend), Tim-3 (F38-2E2;
Biolegend) or an isotype control (MOPC-21; Biolegend) were
added to wells and incubated for 30 min at 37°C 5% CO2.
HMB-PP (Sigma-Aldrich) was added to wells at a final
concentration of either 20 ng mL�1, 2 ng mL�1, 0.2 ng mL�1

or 0.02 ng mL�1. Some wells were left unstimulated to
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assess background activation. CD107a APCH7 (H4A3; BD
Biosciences) was added to each well before incubation at
37°C 5% CO2 for 5 h. After incubation, cells were washed
then stained with Aqua viability dye (ThermoFisher) and a
cocktail containing CD69 FITC (FN50; Biolegend), CD3
BUV805 (SK7; BD Biosciences), plus either Vd2 PE (B6;
Biolegend) for blocking experiments or Vc9 PE (B3;
Biolegend) and Vd2 BV786 (B6; BD Biosciences) for HMB-PP
titrations. After staining, cells were resuspended in PBS
containing 2% FCS before acquisition on a BD LSR Fortessa
using BD FACS Diva.

In vitro expansion of Vd2 T cells

Cryopreserved PBMC were thawed in RF10, then stimulated
with 15 lM zoledronic acid monohydrate (Sigma-Aldrich)
and 100 IU mL�1 IL-2 (PeproTech, Cranbury, USA) and
incubated in 5% CO2 at 37°C. Every 2–3 days, expansions
were washed and resuspended in fresh media
supplemented with 100 IU mL�1 IL-2 at 2 9 106 cells mL�1.

Vd2 T cell expansion purity assessment and
depletion of contaminating cells

Expansion from the PLWH/ART cohort was assessed for
purity of Vd2 T cells on day 10 or 11. 0.5 9 106 cells were
stained with Aqua viability dye (ThermoFisher), Vd1 APC
(TS8.2; ThermoFisher), CD3 BV786 (SK7; Biolegend), CD56
BUV395 (NCAM16.2; BD Biosciences), Vd2 PE (B6; Biolegend)
and TCR ab PE-Cy7 (IP36; ThermoFisher). After staining, cells
were resuspended in PBS containing 2% FCS before
acquisition before acquiring samples on a BD LSR Fortessa
using BD FACS Diva. Contaminating cells were magnetically
depleted of TCR ab PE-Cy7 (IP36; ThermoFisher) and/or Vd1
PE-Cy7 (TS8.2; ThermoFisher) binding cells using anti-PE
MicroBeads (Miltenyi Biotec, Sydney, Australia) according to
the manufacturer’s instructions. Depleted cultures were
again checked for Vd2 T cell purity by staining with an
Aqua viability dye (ThermoFisher), CD3 BV786 (SK7;
Biolegend), CD56 BUV395 (NCAM16.2; BD Biosciences), Vd2
PE (B6; Biolegend) and TCR ab PE-Cy7 (IP36; ThermoFisher).

Flow cytometry-based infected cell
elimination assay

Lysis of the 8E5/LAV HIV-infected cell line (NIH ARP-#95)
was quantified using a modified version of a flow
cytometry-based infected cell elimination assay previously
described.74 Expanded Vd2 T cells were collected for use on
day 12 or 13 of in vitro expansion. For surface receptor
blocking, expanded Vd2 T cells were preincubated with
5 lg mL�1 of anti-NKG2D (1D11; Biolegend), anti-2B4
(eBioPP35; eBioscience) or an IgG1 j isotype control
(MOPC-21; Biolegend) for 30 min at 37°C 5% CO2. 8E5
target cells were stained with eFluor 670 dye (eBioscience)
and added to tubes containing expanded Vd2 T cells at
effector:target cell ratios of 5:1, 2:1, 1:1, 1:2, 1:5 and 1:10, or
to a tube without effector cells to measure background
death. For some experiments, eFluor 670 stained
CEM.NKr-CCR5 cells (NIH ARP-4376) were used in place of
8E5 cells. Tubes were centrifuged at 300 9 g for 1 min, then

incubated at 37°C with 5% CO2 for 4 h. After the incubation
period, eGFP-CEM.NKr cells (NIH ARP-11698) were added as
a reference population to calculate elimination of p24+ or
p24� 8E5 cells. Cells were stained with Aqua viability dye
(ThermoFisher), then permeabilised with Cytofix/Cytoperm
Fixation/Permeabilization Solution Kit (BD Biosciences) prior
to staining with HIV p24 RD1 (KC57; Beckman Coulter,
Mount Waverley, Australia). After intracellular staining,
samples were washed and resuspended in PBS containing
2% FCS before acquisition on a BD LSR Fortessa using BD
FACS Diva, with a consistent number of eGFP+ CEM cells
collected per tube. Percent cytolysis was calculated with the
following formula: ([%p24+ compared to eGFP+ target alone
� %p24+ compared to eGFP+ experimental tube] � %p24+

compared to eGFP+ target alone) 9 100.

Expression of ligands on target cells

To assess the expression of ligands on the 8E5 cell line, cells
were incubated with 5 lg mL�1 of NKG2D-Fc fusion protein
(R&D Systems), 2B4-Fc fusion protein (R&D Systems),
DNAM-1-Fc fusion protein (R&D Systems) or left unstained
for 30 min, washed twice, then stained with Aqua viability
dye (ThermoFisher). Binding of Fc-fusion proteins was
detected with an APC-conjugated goat anti-human IgG
antibody (HP6017; Biolegend). Samples were washed
twice and then permeabilised with Cytofix/Cytoperm
Fixation/Permeabilization Solution Kit (BD Biosciences) prior
to staining with HIV p24 RD1 (KC57; Beckman Coulter).
After intracellular staining, samples were washed and
resuspended in PBS containing 2% FCS before acquisition
on a BD LSR Fortessa using BD FACS Diva.

Flow cytometric phenotyping of in vitro
expanded Vd2 T cells

On day 14 of expansion, Vd2 T cells were collected and
washed in PBS and stained with Aqua viability dye
(ThermoFisher). Next, cells were surface stained for the
following antibodies: CD26 FITC (BA5b, Biolegend), CD45RA
PerCpCy5.5 (HI100; Biolegend), CD160 Alexa Fluor 647
(BY55; BD Biosciences), TIGIT APC Fire 750 (A15153G;
Biolegend), PD-1 BV421 (EH12.2H7; Biolegend), NKG2D
BV650 (1D11; BD Biosciences), CD27 BV786 (L128; BD
Biosciences), CD94 BUV395 (HP-3D9; BD Biosciences), Tim-3
BUV737 (7D3; BD Biosciences), CD3 BUV805 (SK7; BD
Biosciences), Vd2 PE (B6; Biolegend) and 2B4 PE-Dazzle
(C1.7; Biolegend). After surface staining, cells were washed
and resuspended in PBS containing 2% FCS before
acquisition on a BD LSR Fortessa using BD FACS Diva.

Statistics

Flow cytometry data were analysed in FlowJo v10.2 (FlowJo,
LLC, Ashland, USA). Statistical analyses were carried out using
GraphPad Prism v10 (GraphPad, Boston, USA). Correlations
were calculated using Spearman’s r-test with two-tailed
post-tests. Wilcoxon matched-pairs signed rank tests were
performed for paired analysis. For unpaired data, Mann–
Whitney U-tests were performed. For all t-tests, P-values
< 0.05 were determined to be significant, otherwise ns.
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